Page 1 of 26

GEN025 2012 Day 26

Quiz 8: Not yet.

(Re-/Late) submission of Quiz 8 will be ac- cepted at the Final on Friday, March 1.

Paper: Pick up at H113

# of Votes Cast + Votes + Format = Total.

Votes = min(total # of votes obtained, 7)

Extra Office Hour: To be announced at the

Forum in Moodle on Saturday, February 23.

1

Page 2 of 26

Four Color Theorem

K

TK C

S

I

G

T

2

Page 3 of 26

Four Color Theorem

K

TK C

S

I

G

T

1

2 3

1

2

2

3

3

Page 4 of 26

Four Color Theorem

K

TK C

S

I

G

T

1

3 4

1

2

2

3

4

Page 5 of 26

四色定理 Kenneth Appel と Wolfgang Haken は

1970年に「平面グラフは各頂点を 4 色で塗って、同じ

色の点は隣接しないようにすることができる。」ことを証

明した。これが、四色定理 (Four Color Theorem) と

いわれるもので、どんな地図も4 色あれば隣接する国を

違う色で塗り分けることができることを示している。こ

こでは、5 色で塗ることができることを示す。∗

Theorem. 平面グラフは各頂点を 5 色で塗って、同

じ色の点は隣接しないようにすることができる。

∗同じ議論から4色では定理の条件をたもって塗り分けることができ

ないグラフで点の数が最小のものは、次数が 4 の点を含まないこ

ともわかる。

5

Page 6 of 26

Four Color Theorem A graph is said to be n- colorable if it’s possible to assign one of n colors to each

vertex in such a way that no two connected vertices have

the same color. K. Appel and W. Haken proved that every

plane graph is 4 colorable. This implies that four different

colors are sufficient to color countries on a map in such a

way that no two adjacent countries have the same color.

In the following we show a weaker result.

Theorem. Let Γ be a plane graph. Then It

is possible to assign five colors to each vertex in

such a way that no two adjacent vertices have

the same color.

6

Page 7 of 26

Proof. 1. Let Γ be a plane graph of smallest

size which is not 5-colorable.

2. Γ is connected and has a vertex x of degree

at most 5.

3. If x is removed, Γ is 5 colorable.

4. deg(x) = 5 and there is no way to color 5

vertices adjacent to x with less than 5 colors.

5. Let Γ(x) = {x1, x2, x3, x4, x5} and x1 is col- ored with 1. x2 with 2, . . . , x5 with 5.

6. There are a path with only 1 or 3 colored ver- tices from x1 to x3, and a path with only 2 or 4

colored vertices from x2 to x4. A contradiction.

7

Page 8 of 26

Regular Graphs and

Regular Polyhedra Graphs

少し美しいグラフ、極度に美しいグラフ、美しいグラフ

正則グラフと正多面体グラフと. . .

8

Page 9 of 26

k-regular graphs (k-正則グラフ)

v = 1

v = 2

v = 3

v = 4

9

Page 10 of 26

k-regular graphs (k-正則グラフ)

v = 1: k = 0

v = 2: k = 0 k = 1

v = 3: k = 0 k = 2

v = 4: k = 0 k = 1

k = 2 k = 3

10

Page 11 of 26

k-regular graphs (k-正則グラフ): v = 5

11

Page 12 of 26

k-正則グラフ: v = 5

k = 0

k = 2

k = 4

12

Page 13 of 26

k-regular graphs (k-正則グラフ): v = 6

13

Page 14 of 26

k-regular graphs (k-正則グラフ): v = 6

k = 0

k = 1

k = 2

14

Page 15 of 26

Definition. Γ = (V, E) としたとき、頂点集合 V

で辺集合は E 以外の V の二点集合 E としたものを、

Γ の補グラフ (complement of Γ) といい Γ と書く。

Γ Γ ∆ ∆

Proposition. Γ = (V, E) を 頂点の数が v の k-正

則グラフとすると Γ は 頂点の数が v の (v − k − 1)-

正則グラフである。

15

Page 16 of 26

k-regular graphs (k-正則グラフ): v = 6

k = 0 k = 5

k = 1 k = 4

k = 2 k = 3

16

Page 17 of 26

k-regular graphs (k-正則グラフ): v = 7

17